Not All Parents Are Equal for MO-CMA-ES

نویسندگان

  • Ilya Loshchilov
  • Marc Schoenauer
  • Michèle Sebag
چکیده

The Steady State variants of the Multi-Objective Covariance Matrix Adaptation Evolution Strategy (SS-MO-CMA-ES) generate one offspring from a uniformly selected parent. Some other parental selection operators for SS-MO-CMA-ES are investigated in this paper. These operators involve the definition of multi-objective rewards, estimating the expectation of the offspring survival and its Hypervolume contribution. Two selection modes, respectively using tournament, and inspired from the Multi-Armed Bandit framework, are used on top of these rewards. Extensive experimental validation comparatively demonstrates the merits of these new selection operators on unimodal MO problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Multi-objective Variable Metric Evolution Strategy, Part I

The covariance matrix adaptation evolution strategy (CMA-ES) is one of the most powerful evolutionary algorithms for real-valued single-objective optimization. Here a variant of the CMA-ES for multi-objective optimization (MOO) is developed. First a single-objective, elitist CMA-ES using plus-selection and step size control based on a success rule is introduced. This algorithm is compared to th...

متن کامل

Covariance Matrix Adaptation for Multi-objective Optimization

The covariance matrix adaptation evolution strategy (CMA-ES) is one of the most powerful evolutionary algorithms for real-valued single-objective optimization. In this paper, we develop a variant of the CMA-ES for multi-objective optimization (MOO). We first introduce a single-objective, elitist CMA-ES using plus-selection and step size control based on a success rule. This algorithm is compare...

متن کامل

Steady-State Selection and Efficient Covariance Matrix Update in the Multi-objective CMA-ES

The multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) combines a mutation operator that adapts its search distribution to the underlying optimization problem with multicriteria selection. Here, a generational and two steady-state selection schemes for the MO-CMA-ES are compared. Further, a recently proposed method for computationally efficient adaptation of the search ...

متن کامل

Recombination for Learning Strategy Parameters in the MO-CMA-ES

The multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) is a variable-metric algorithm for real-valued vector optimization. It maintains a parent population of candidate solutions, which are varied by additive, zero-mean Gaussian mutations. Each individual learns its own covariance matrix for the mutation distribution considering only its parent and offspring. However, t...

متن کامل

Convergence of Hypervolume-Based Archiving Algorithms II: Competetiveness

We study the convergence behavior of (μ + λ)-archiving algorithms. A (μ + λ)-archiving algorithm defines how to choose in each generation μ children from μ parents and λ offspring together. Archiving algorithms have to choose individuals online without knowing future offspring. Previous studies assumed the offspring generation to be best-case. We assume the initial population and the offspring ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011